Teachers’ Content-related Learning Processes: Professional Development Content on Inclusive Mathematics Teaching Used by Teachers

Authors

  • Jennifer Bertram University of Duisburg-Essen
  • Katrin Rolka Ruhr University Bochum

Keywords:

teacher learning processes, professional development, inclusive mathematics teaching, content-related knowledge, transfer of learning

Abstract

The knowledge regarding teacher learning processes is fundamental to organising a professional development (PD) programme systematically and effectively. In the study reported in this article, we examined content-related teacher learning processes in the context of inclusive mathematics teaching. We first explain approaches to inclusive mathematics teaching (derived from the literature) and how these approaches can help teachers to differentiate with open-ended and challenging tasksWhile focusing on the transfer of learning as one important part of teacher learning processes, the study investigated teachers’ use of the PD content (i.e., the teaching approaches) after a PD session. For this, a case vignette as a method of inquiry was used. We analysed the written answers from 15 secondary teachers using qualitative content analysis. The teachers used many approaches to inclusive mathematics teaching and applied them in the context of the case vignette. Finally, we focus on implications for the design of PD programmes concerning teacher learning about inclusive mathematics teaching.

References

Agyei, D. D., & Voogt, J. (2014). Examining factors affecting beginning teachers’ transfer of learning of ICT-enhanced learning activities in their teaching practice. Australian Journal of Educational Technology, 30(1), 92–105.

Arbaugh, F., & Brown, C. A. (2005). Analyzing mathematical tasks: A catalyst for change? Journal of Mathematics Teacher Education, 8(6), 499–536.

Bertram, J. (2022). Lernprozesse von Lehrkräften im Rahmen einer Fortbildung zu inklusivem Mathematikunterricht [Teachers‘ learning processes in the context of a professional development programme on inclusive mathematics teaching]. Springer.

Bertram, J., Albersmann, N., & Rolka, K. (2020). Ansatz zur Weiterentwicklung des Modells der professionellen Handlungskompetenz von Lehrkräften für inklusiven (Mathematik-)Unterricht: Identifizierte Kompetenzbereiche bei Lehrkräften zu Beginn einer Fortbildung [Approach to further develop the model of teachers’ professional competence for inclusive (mathematics) teaching: Identified teachers’ domains of competence at the beginning of a professional development program]. QfI - Qualifizierung für Inklusion, 2(1), https://doi.org/10.21248/QfI.25

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637.

Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV Project (pp. 25–48). Springer.

Bikner-Ahsbahs, A., & Große Kamphake, L. (2016). Interesse fördern: Inklusiv. [Support interest: Inclusive]. Mathematik Lehren, 33(195), 8–12.

Bobis, J., Russo, J., Downton, A., Feng, M., Livy, S., McCormick, M., & Sullivan, P. (2021). Instructional moves that increase chances of engaging all students in learning mathematics. Mathematics, 9(6), 582.

Buró, S., & Prediger, S. (2019). Low entrance or reaching the goals? Mathematics teachers’ categories for differentiating with open-ended tasks in inclusive classrooms. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 4636–4643). Freudenthal Group & ERME.

Desimone, L. M. (2009). Improving impact studies of teachers’ professional development: Toward better conceptualizations and measures. Educational Researcher, 38(3), 81–199.

Goldsmith, L. T., Doerr, H. M., & Lewis, C. C. (2014). Mathematics teachers‘ learning: A conceptual framework and synthesis of research. Journal of Mathematics Teacher Education, 17(1), 5–36.

Goldstone, R. L., & Day, S. B. (2012). Introduction to “new conceptualization of transfer of learning.” Educational Psychologist, 47(3), 149–152.

Göb, N. (2018). Wirkungen von Lehrerfortbildungen. Eine explorative Betrachtung von Fortbildungstypen und deren Effekte auf die Teilnehmenden am Beispiel des Pädagogischen Landesinstituts Rheinland-Pfalz. [Effectiveness of professional development programmes. An explorative consideration of types of professional development programmes and their effects on participants using the example of the pedagogical institute of Rhineland-Palatinate]. Beltz.

Häsel-Weide, U., & Nührenbörger, M. (2017). Grundzüge des inklusiven Mathematikunterrichts. Mit allen Kindern rechnen. [Main features of inclusive mathematics teaching: Counting with all children]. In U. Häsel-Weide & M. Nührenbörger (Eds.), Gemeinsam Mathematik lernen: mit allen Kindern rechnen (pp. 8–21). Grundschulverband.

Holzäpfel, L., Leuders, T., & Marxer, M. (2011). Lebensraum Zoo. Wie viel Platz haben die Tiere? [Living environment zoo. How much space do the animals have?]. Mathematik Lehren (Mathe-Welt), 164, 25–40.

Hußmann, S., Leuders, T., Prediger, S., & Barzel, B. (2015). Mathewerkstatt 8 (p. 234) [Math-factory]. Cornelsen.

Jung, J., & Schütte, J. (2017). Content-related and social participation in inclusive mathematics education. In T. Dooley & G. Gueudet (Eds.), Proceedings of the 10th Congress of the European Society for Research in Mathematics Education (pp. 1497–1504). DCU Institute of Education and ERME.

Knipping, C., Korff, N., & Prediger, S. (2017). Mathematikdidaktische Kernbestände im Umgang mit Heterogenität: Versuch einer curricularen Bestimmung. [Mathematics didactical core elements for dealing with heterogeneity: Attempt of a curricular determination]. In C. Selter, S. Hußmann, C. Hößle, C. Knipping, K. Lengnink, & J. Michaelis (Eds.), Diagnose und Förderung heterogener Lerngruppen: Theorien, Konzepte und Beispiele aus der MINT-Lehrerbildung (pp. 39–60). Waxmann.

Mayring, P. (2014). Qualitative content analysis. Theoretical foundation, basic procedure and software solution. https://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173

McDonald, L. (2011). Transfer of training in teacher PD. A process-outcome orientation. Procedia – Social and Behavioral Sciences, 29, 1885–1894.

Mellroth, E., Bergwall, A., & Nilsson, P. (2021). Task design for differentiated instruction in mixed-ability mathematics classrooms: Manifestations of contradictions in a professional learning community. Mathematics Teacher Education and Development, 23(3), 78–96.

Prediger, S. (2019a). Investigating and promoting teachers' expertise for language-responsive mathematics teaching. Mathematics Education Research Journal, 31(4), 367–392. https://doi.org/10.1007/s13394-019-00258-1

Prediger, S. (2019b). Design-research in der gegenstandsspezifischen Professionalisierungsforschung: Ansatz und Einblicke in Vorgehensweisen und Resultate. [Design research in content-specific professionalization research: Approach and insights into procedures and results.] In T. Leuders, E. Christophel, M. Hemmer, F. Korneck, & P. Labudde (Eds.), Fachdidaktische Forschung zur Lehrerbildung (pp. 11–34). Waxmann.

Prediger, S., Kuhl, J., Büscher, C., & Buró, S. (2019). Mathematik inklusiv lehren lernen. Entwicklung eines forschungsbasierten interdisziplinären Fortbildungskonzepts. [Learning to teach mathematics inclusively: Development of a research-based interdisciplinary professional development programme]. Journal für Psychologie, 27(2), 288–312.

Prediger, S., Leuders, T., & Rösken-Winter, B. (2017). Drei-Tetraeder-Modell der gegenstandsbezogenen Professionalisierungsforschung: Fachspezifische Verknüpfung von Design und Forschung. [Three-tetrahedron model for content-related PD research. Subject-specific connection of design and research]. Jahrbuch für allgemeine Didaktik, 2017, 159–177.

Prediger, S., Rösken-Winter, B., & Leuders, T. (2019). Which research can support PD facilitators? Research strategies in the three-tetrahedron model for content-related PD research. Journal of Mathematics Teacher Education, 22(4), 407–425.

Rolka, K., & Albersmann, N. (2019). Lernen am gemeinsamen Gegenstand. Die Aktivität „Quader bauen“ für Schüler/innen mit dem Förderschwerpunkt Lernen. [Learning on a common subject. The activity “Building Cuboids“ for students with learning difficulties]. MNU Journal, 3, 189–193.

Roos, H. (2019). Inclusion in mathematics education: An ideology, a way of teaching, or both? Educational Studies in Mathematics, 100(1), 25–41.

Russo, J., Bobis, J., & Sullivan, P. (2021). Editorial: Differentiating instruction in mathematics. Mathematics Teacher Education and Development, 23(3), 1–5.

Scherer, P. (1995). Entdeckendes Lernen im Mathematikunterricht der Schule für Lernbehinderte – Theoretische Grundlegung und evaluierte unterrichtspraktische Erprobung. [Discovery learning in mathematics at the school for students with learning disabilities. Theoretical foundation and evaluated trial in teaching practice]. Edition Schindele.

Scherer, P. (2017). Preparing pre-service teachers for inclusive mathematics classrooms – concepts for primary education. In J. Novotná & H. Moraová (Eds.), SEMT 2017. Proceedings of the International Symposium Elementary Maths Teaching: Equity and Diversity in Elementary Mathematics Education (pp. 364–373). Charles University.

Scherer, P. (2019a). The potential of substantial learning environments for inclusive mathematics – student teachers’ explorations with special needs students. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (pp. 4680–4687). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

Scherer, P. (2019b). Inklusiver Mathematikunterricht: Herausforderungen bei der Gestaltung von Lehrerfortbildungen [Inclusive mathematics teaching: Challenges in the design of professional development programmes]. In A. Büchter, M. Glade, R. Herold-Blasius, M. Klinger, F. Schacht, & P. Scherer (Eds.), Vielfältige Zugänge zum Mathematikunterricht: Konzepte und Beispiele aus Forschung und Praxis (pp. 327–340). Springer.

Scherer, P., Beswick, K., DeBlois, L., Healy, L., & Moser Opitz, E. (2016). Assistance of students with mathematical learning difficulties: how can research support practice? ZDM Mathematics Education, 48(5), 633–649.

Schöttler, C., & Häsel-Weide, U. (2017). Students constructing meaning for the decimal system in dyadic discussions: epistemological and interactionist analyses of negotiation processes in an inclusive setting. In J. Novotná & H. Moraová (Eds.), SEMT 2017. Proceedings of the International Symposium Elementary Maths Teaching. Equity and diversity in elementary mathematics education (pp. 373–383). Charles University.

Schunk, D. H. (2012). Learning theories. An educational perspective: 6th edition (1st ed. 1991). Pearson Education.

Sullivan, P., Mousley, J., & Zevenbergen, R. (2006). Teacher actions to maximize mathematics learning opportunities in heterogeneous classrooms. International Journal of Science and Mathematics Education, 4(1), 117–143.

von Aufschnaiter, C., Selter, C., & Michaelis, J. (2017). Nutzung von Vignetten zur Entwicklung von Diagnose und Förderkompetenzen: Konzeptionelle Überlegungen und Beispiele aus der MINT-Lehrerbildung. [Use of vignettes to develop competencies of diagnosis and support: Conceptual considerations and examples from STEM teacher education]. In C. Selter, S. Hußmann, C. Hößle, C. Knipping, K. Lengnink, & J. Michaelis (Eds.), Diagnose und Förderung heterogener Lerngruppen: Theorien, Konzepte und Beispiele aus der MINT-Lehrerbildung (pp. 85–106). Waxmann.

Downloads

Published

2022-08-16

Issue

Section

Articles