Exploring Instruments for Assessing Initial Mathematical Knowledge in Primary Teacher Education

Authors

Keywords:

fundamental mathematical knowledge, mathematics teacher education, assessment instruments validation, prospective primary teacher

Abstract

Knowing the mathematical knowledge of students entering primary teacher education is key to guiding admission or diagnoses to inform teacher education programs. To understand how students' initial mathematical knowledge is organised, the study draws on the idea of Fundamental Mathematical Knowledge, which had been defined as the mathematical knowledge necessary for students to be able to successfully follow subjects about mathematics and teaching during their teacher education. This study examined two questionnaires that were designed in Catalonia and Chile to gauge the disparity between students' mathematical knowledge at the beginning of their teacher education. and a specification of Fundamental Mathematical Knowledge defined around curricular content blocks. The scores obtained in both questionnaires by two groups of students—one in Barcelona and another in Santiago de Chile—constituted the data. The quantitative analysis of the data enabled the psychometrically validation of the instruments for the measurement of students' initial mathematical knowledge and revealed that the structure of this knowledge was unidimensional and behaved as a single latent construct. From the study is was concluded that teacher education programs should be aimed at progressing towards the development of a deeper understanding of elementary mathematics and its conceptual connections.

References

Albarracín, L., Rojas, F., Chandia, E., Ubilla, F. M. & Gorgorió, N. (2021). Unidimensionalidad del conocimiento matemático inicial de estudiantes para maestro. [Unidimensionality of initial mathematical knowledge of students for teachers.] In P. D. Diago, D. F. Yáñez, M. T. González-Astudillo & D. Carrillo (Eds.), Investigación en Educación Matemática XXIV (pp. 117–124). SEIEM.

Arce, M., Marbán, J. M. & Palop, B. (2017). Aproximación al conocimiento común del contenido matemático en estudiantes para maestro de primaria de nuevo ingreso desde la prueba de evaluación final de Educación Primaria. [Approach to common knowledge of mathematical content in students for new elementary school teachers from the final evaluation test of Primary Education] In J. M. Muñoz-Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M. L. Callejo & J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp. 119–128). SEIEM.

Association of Mathematics Teacher Educators. (2017). Standards for preparing teachers of mathematics. https://amte.net/standards

Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The Elementary School Journal, 90(4), 449–466. https://doi.org/10.1086/461626

Ball, D. L., Blömeke, S., Delaney, S., & Kaiser, G. (2012). Measuring teacher knowledge: Approaches and results from a cross-national perspective. ZDM Mathematics Education, 44(3), 223–455.

Ball, D. L., Lubienski, S., & Mewborn, D. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of research on teaching, (4th ed., pp. 433–456). Macmillan.

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389−407. https://doi.org/10.1177/0022487108324554

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M. & Tsai, Y. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47, 133–180. https://doi.org/10.3102/0002831209345157

Begué, N., Batanero, C., Gea, M. M., & Valenzuela-Ruiz, S. M. (2023). Prospective secondary school teachers’ knowledge of sampling distribution properties. Eurasia Journal of Mathematics, Science and Technology Education, 19(5), em2265. https://doi.org/10.29333/ejmste/13159

Bellini, D., Crescentini, A., Zanolla, G., Cubico, S., Favretto, G., Faccincani, L., Ardolino, P., & Gianesini, G. (2019). Mathematical Competence Scale (MCS) for Primary School: The psychometric properties and the validation of an instrument to enhance the sustainability of talents development through the Numeracy Skills Assessment. Sustainability, 11(9), 2569. https://doi.org/10.3390/su11092569

Beswick, K., & Goos, M. (2012). Measuring pre-service primary teachers’ knowledge for teaching mathematics. Mathematics Teacher Education & Development, 14(2), 70–90.

Bonett, D. G., & Wright, T. A. (2015). Cronbach’s alpha reliability: Interval estimation, hypothesis testing, and sample size planning. Journal of Organizational Behavior, 36(1), 3–15. https://doi.org/10.1002/job.1960

Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Aguilar-González, A., Ribeiro, M. & Muñoz-Catalán, M. C. (2018). The Mathematics Teacher’s Specialised Knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236–253. https://doi.org/10.1080/14794802.2018.1479981

Castro, Á., Mengual, E., Prat, M., Albarracín, L., & Gorgorió, N. (2014). Conocimiento matemático fundamental para el grado de Educación Primaria: Inicio de una línea de investigación. [Fundamental mathematical knowledge for primary education: Beginning of a line of research] In M. T. González, M. Codes, D. Arnau & T. Ortega (Eds.), Investigación en Educación Matemática XVIII (pp. 227–236). SEIEM.

Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16(1), 64–73.

Cooney, T. J., & Wiegel, H. G. (2003). Examining the mathematics in mathematics teacher education. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 795–828). Kluwer.

Departament d’Ensenyament (2015). Currículum d'educació primària. http://portaldogc.gencat.cat/utilsEADOP/PDF/6900/1431926.pdf

Department of Education. (2013). The national curriculum in England: Key Stages 1 and 2 framework documents.

Feuer, M. J., Floden, R. E., Chudowsky, N., & Ahn, J. (2013). Evaluation of teacher preparation programs: Purposes, methods, and policy options. National Academy of Education.

Giaconi, V., Gómez, G., Jiménez, D., Gareca, B., Durán del Fierro, F., & Varas, M. L. (2022). Initial diagnostic assessment in pre-service teacher training in Chile and its relationship with institutional contexts. Pensamiento Educativo, Revista de Investigación Latinoamericana (PEL), 59(1), 1–16. https://doi.org/10.7764/PEL.59.1.2022.4

Gorgorió, N., & Albarracín, L. (2020). El conocimiento matemático previo a la formación inicial de los maestros: Necesidad y concreción de una prueba para su evaluación. [Mathematical knowledge prior to initial teacher training: The need for and specificity of a test for its assessment] In E. Badillo, N. Climent, C. Fernández & M. González-Astudillo (Eds.), RED8-Educación Matemática y Formación de Profesores (pp. 111–132). Ediciones Universidad de Salamanca.

Gorgorió, N., Albarracín, L., Ärlebäck, J., Laine, A., Newton, R. & Villarreal, A. (2017). Fundamental mathematical knowledge: Progressing its specification. Linköping University Electronic Press. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1318541&dswid=-7867

Gorgorió, N., Albarracín, L., Laine, A., & Llinares, S. (2021). Primary education degree programs in Alicante, Barcelona and Helsinki: Could the differences in the mathematical knowledge of incoming students be explained by the access criteria? LUMAT, 9(1) 174–207. https://doi.org/10.31129/lumat.9.1.1468

Gorgorió, N., Albarracín, L., & Villareal, A. (2017). Examen de competència logicomatemàtica en la nova prova d'accés als graus de mestre. Noubiaix, 39, 58–64.

Hiebert, J., Gallimore, R., & Stigler, J. W. (2002). Knowledge base for the teaching profession: What would it look like and how can we get one? Educational Researcher, 31(5), 3–15.

Hiebert, J., Berk, D., Miller, E., Gallivan, H. & E. Meikle (2019). Relationships between opportunity to learn mathematics in teacher preparation and graduates’ knowledge for teaching mathematics. Journal for Research in Mathematics Education, 50(1), 23–50. https://doi.org/10.5951/jresematheduc.50.1.0023

Hill, H. C., Sleep, L., Lewis, J. M., & Ball, D. L. (2007). Assessing teachers’ mathematical knowledge. What knowledge matters and what evidence counts? In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 111–156). Information Age Publishing.

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1e55. https://doi.org/10.1080/10705519909540118

Ingram, N., & Linsell, C. (2014). Foundation content knowledge: Pre-service teachers’ attainment and affect. In J. Anderson, M. Cavanagh, & A. Prescott (Eds.), Curriculum in focus: Research guided practice. Proceedings of the 37th annual conference of the Mathematics Education Research Group of Australasia (pp. 712–718). MERGA.

Jöreskog, K. G., & Sörbom, D. (1986). LISREL VI: Analysis of linear structural relationships by maximum likelihood and least square methods. Scientific Software.

Kinnear, G., Iannone, P., & Davies, B. (2025). Student approaches to generating mathematical examples: comparing e-assessment and paper-based tasks. Educational Studies in Mathematics, 119, 179-201. https://doi.org/10.1007/s10649-024-10361-1

Law 20.903 (2016, April 1). Sistema de Desarrollo Profesional Docente [Teacher professional development system]. Biblioteca del Congreso Nacional de Chile. http://bcn.cl/2py3i

Linsell, C., & Anakin, M. (2012). Diagnostic assessment of pre-service teachers’ mathematical content knowledge. Mathematics Teacher Education and Development, 14(2), 4–27.

Linsell, C., & Anakin, M. (2013). Foundation content knowledge: What do pre-service teachers need to know? In V. Steinle, L. Ball & C. Bardini (Eds.), Mathematics education: Yesterday, today and tomorrow. Proceedings of the 36th annual conference of the Mathematics Education Research Group of Australasia (pp. 442–449). MERGA.

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Erlbaum.

Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103, 391–410.

Martínez, M. V., Rojas, F., Ulloa, R., Chandía. E., Ortíz, A., & Perdomo-Díaz, J. (2019). Beliefs and mathematical school knowledge at the beginning of pre-service primary teacher education. Pensamiento Educativo, 56(2), 1–19. https://doi.org/10.7764/PEL.56.2.2019.9

Miller-Levy, R., Taylor, D., & Hawke, L. (2014). Maintaining the boundaries: Teacher preparation program admission criteria for screening quality candidates. Administrative Issues Journal: Connecting Education, Practice, and Research, 4(1), 40–49.

MINEDUC. (2012). Bases Curriculares para la Educación Básica. Ministerio de Educación. Chile. https://www.curriculumnacional.cl/

National Board of Education. (2016). National core curriculum for basic education 2014. Finnish National Board of Education.

Nortes, A., & Nortes, R. (2013). Formación inicial de maestros: un estudio en el dominio de las matemáticas. [Initial teacher training: A study in the domain of mathematics] Profesorado: Revista de Currículum y Formación del Profesorado, 17(3), 185–200.

Nortes, R., & Nortes, A. (2018). ¿Tienen los futuros maestros los conocimientos matemáticos elementales? [Do future teachers have basic mathematical knowledge?] In L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García-García & A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 397–406). SEIEM.

Novick, M. R., & Lewis, C. (1967). Coefficient alpha and the reliability of composite measurements. Psychometrika 32, 1–13.

Rojas, F., Seissus, E. & Jiménez, D. (2021). Diagnóstico inicial docente en matemática en programas de pedagogía en educación básica. [Initial teaching diagnosis in mathematics in basic education pedagogy programs] In D. M. Gómez, C. Cornejo & M. V. Martínez (Eds.). Actas de las XXV Jornadas Nacionales de Educación Matemática. UOH—SOCHIEM.

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The Knowledge Quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8, 255–281. https://doi.org/10.1007/s10857-005-0853-5

Rowland, T., Turner, F., Thwaites, A., & Huckstep, P. (2009). Developing primary mathematics teaching: Reflecting on practice with the Knowledge Quartet. SAGE Publications.

Ryan, J., & McCrae, B. (2005/06). Assessing pre-service teachers’ mathematics subject knowledge. Mathematics Teacher Education and Development, 7, 72–89. https://mted.merga.net.au/index.php/mted/article/view/96

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modelling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323–337. https://doi.org/10.3200/joer.99.6.323-338

Segars, A. H. (1997). Assessing the unidimensionality of measurement: A paradigm and illustration within the context of information systems research. Omega, 25(1), 107–121.

Senk, S. L., Tatto, M. T., Reckase, M., Rowley, G., Peck, R., & Bankov, K. (2012). Knowledge of future primary teachers for teaching mathematics: An international comparative study. ZDM Mathematics Education, 44(3), 307–324. https://doi.org/10.1007/s11858-012-0400-7

Shulman, S. (1987). Knowledge and teaching: Foundations of the new reforms. Harvard Educational Review, 57(1), 1–22. https://doi.org/10.17763/haer.57.1.j463w79r56455411

Skolverket. (2011). Curriculum for the compulsory school, preschool class and the recreation centre, 2011. Fritzes.

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5). Pearson.

Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R., & Rowley, G. (2008). Teacher education and development study in mathematics (TEDS-M): Policy, practice, and readiness to teach primary and secondary mathematics. Conceptual framework. Teacher Education and Development International.

Downloads

Published

2025-10-09

Issue

Section

Articles