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While it is widely believed that Specialized Content Knowledge (SCK) is essential to effective and quality 
mathematics teaching, the specific constructs that compose SCK remain underspecified. This paper 
describes the development and use of a new framework that extends the notion of SCK.  The framework 
was trialled with a cohort of 90 first year Bachelor of Education (Primary) pre-service teachers who 
enrolled in a regional Australian university. The pre-service teachers undertook a mathematics test, which 
required them to address school students’ misconceptions and to explain specific mathematical concepts. 
Resultant data (i.e., the pre-service teachers’ responses to the written test) provided an empirical basis for 
the proposed constructs of SCK. The analysis of the data allowed insight into the central question: whether 
the proposed framework enables researchers to identify the constructs of SCK in the pre-service teachers’ 
responses to a written test which examines their SCK. Ultimately, we aim to conceptualise the constructs of 
SCK through elaborating the theoretical and empirical basis. 
 
Keywords evaluation of mathematics content knowledge for teaching • 
mathematical explanations • mathematical representations • mathematics teacher 
education 

Introduction 

Teachers’ mathematics content knowledge and pedagogical content knowledge are crucial to their 
capacity for providing effective teaching (Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 2008; Cai, 
Mok, Reddy, & Stacey, 2016; Hattie & Donoghue, 2016; Krainer, Hsieh, Peck, & Tatto, 2015; Silverman 
& Thompson, 2008). Research of pre-service teachers’ general mathematics content knowledge and 
mathematics content knowledge for teaching in particular has significantly increased over the last 
decades (e.g., Baumert et al., 2010; Betts, 2011; Krainer et al., 2015).  

Although mathematics educators have been paying special attention to designing relevant and 
practical pedagogy subjects for pre-service teachers, the nature of mathematical knowledge required 
by teachers, and the measures of pre-service teachers’ content knowledge for teaching, are still 
unclear (Baumert et al., 2010). For example, common questions asked by pre-service teachers include: 
“What mathematics content knowledge should we learn for teaching primary school students? What 
knowledge should be used when we explain a mathematics concept to a child? How can pictures or 
manipulatives be used effectively to explain a concept?” (S. Brodie 2016, pers. comm., 23 August). In 
summary, it is challenging for teacher education programmes to determine the most appropriate 
curriculum for mathematics content knowledge. In addition, tutors of mathematics pedagogy subjects 
reflect that they do not know “what conceptual understanding they should look for in pre-service 
teachers’ responses to mathematical tasks” and it is difficult to determine what kind of explanations 
and representations are outstanding, partially acceptable or unacceptable (D. Howarth 2013, pers. 
comm., 20 May). Ball et al. (2008) have named this particular type of knowledge Specialized Content 
Knowledge for mathematics teaching.  
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In Shulman’s work (1986), he suggested that teacher knowledge consisted of subject 
knowledge, pedagogical content knowledge and curricular knowledge. Ball et al. (2008) extended 
Shulman’s notion of Pedagogical Content Knowledge (PCK) for teaching mathematics and suggested 
that PCK is a set of knowledge that facilitates teachers to select mathematical tasks, representations 
and explanations, to interpret classroom discourses and to analyse students’ errors and difficulties. 
While PCK has been proven to have predictive power for student progress and quality of instruction 
(Baumert et al., 2010), the researchers however concluded that “PCK is inconceivable without a 
substantial level of CK [subject knowledge]” (p. 163) because subject knowledge is essential to PCK 
(e.g., Cai et al., 2016; Krainer et al., 2015).  In particular, there has been growing interest in, and a 
marked increase in the attention given to, one of the components of subject knowledge, Specialized 
Content Knowledge. Ball et al. (2008) offered a definition of Specialized Content Knowledge for 
mathematics teaching. They defined Specialised Content Knowledge (SCK) for mathematics teaching as 
“the mathematical knowledge not typically needed for any purpose other than teaching” (Ball et.al., 
2008, p. 400). SCK is different from Common Content Knowledge (CCK) which is referred to as the 
mathematical “knowledge of a kind used in a wide variety of settings – in other words not unique to 
teaching; these are not specialized understandings but are questions that typically would be 
answerable by others who know mathematics” (Ball et al., 2008, p. 399).  In brief, SCK is a particular 
type of mathematical knowledge and skills unique to teaching, such as conceptual and procedural 
understanding of mathematics and recognising students’ patterns of errors (Ball et al., 2008; Ball, 
Thames, Bass, Sleep, Lewis, & Phelps, 2009).  Hill, Rowan and Ball (2005) further elaborated the 
meaning of this type of knowledge needed by teachers by stating that it is an understanding and a 
skill that requires teachers to provide explanations, analyse student responses, and use appropriate 
images to represent concepts. In summary, SCK refers to teachers’ knowledge that requires 
understanding of mathematics different from the mathematical knowledge needed by other 
practitioners of mathematics (Silverman & Thompson, 2008). For instance, an accountant and a doctor 
do not need to give a mathematical reason for finding a common denominator when adding fractions 
but this reasoning is a teacher’s natural work in classroom teaching.  

Despite Ball et al. (2008) having offered a definition of Specialized Content Knowledge (SCK) 
and indicating a need for refinement and revision, few researchers (such as Ball et al., 2008; Ball et al., 
2009; Baumert et al., 2010) have developed some descriptions of what teachers should know in this 
domain. While it is widely believed that SCK is essential to effective and quality teaching, the specific 
constructs that compose SCK remain underspecified. More importantly, even when assessments of 
pre-service teachers’ SCK are authentic and thoughtfully implemented, there are very few effective 
frameworks that guide mathematics educators to identify pre-service teachers’ SCK.  Some existing 
measures of pre-service teachers’ mathematics content knowledge (including SCK) such as those 
suggested by Beswick and Goos (2012) and Gallant and Mayer (2012) have provided sound profiles in 
this area. However, validated and published measures to inform educators and researchers of how 
good the pre-service teachers’ SCK is are rare.  

To address this research gap, this paper reports an effort to conceptualise and develop the 
construct of SCK. We used existing research to develop a framework which extends the current 
notion of SCK. The framework has been trialled and evaluated with a group of pre-service teachers. 
While our research is an ongoing work, we choose to contribute our thoughts by sharing this 
framework in this paper because “our effort might be instructive to others trying to conceptualize, 
identify, measure, and ultimately improve teachers’ Pedagogical Content Knowledge” (Hill, Ball & 
Schilling, 2008; p.373). Our paper aims to conceptualise the construct of SCK through elaborating the 
theoretical and empirical basis. The research question for this framework trial is whether the 
proposed framework enables researchers to identify the construct of SCK in the pre-service teachers’ 
responses to a written test which examine their SCK. Ultimately, we strive to theorise and develop a 
more viable conceptual framework of teachers’ Specialised Content Knowledge.  
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Identifying the components of Specialised Content Knowledge 

Building on Ball et al.’s work (2008), in a study, Lin, Chin and Chiu (2011) suggested three elements of 
SCK, namely, Explanation (i.e., how to provide mathematical explanations for common rules and 
procedures), Representation (i.e., how to choose, make and use mathematical representations 
effectively and accurately), and Justification (i.e., justify whether the numerical answer is correct). We 
agree with Lin et al. that providing an accurate mathematical explanation, using an appropriate 
mathematical representation and justifying an answer are key elements of SCK, but argue that the 
notions of Explanation and Representation should be further elaborated if they are to be used effectively 
in teacher education programs. It is necessary to identify the possible components for each of the 
elements and to delineate relationships between them. The following section will discuss the 
proposed constructs of these elements and their significance. 

 

Explanation 

In the past few decades, conceptual and procedural knowledge tend to be dichotomised in Western 
mathematics education (Lai & Murray, 2015; Newton, 2008). However, some studies (such as Hiebert 
& Wearne, 1986; Watkins & Biggs, 2001) have reported that mathematical knowledge may not always 
be easily separated according to this dichotomy. There has been ongoing debate about the 
developmental relationship between conceptual and procedural knowledge (Rittle-Johnson, Siegler, 
& Alibali, 2001). Shulman (1986) argued that mathematical competence requires a linking of 
conceptual and procedural knowledge. Rittle-Johnson et al. (2001) have posited that procedural and 
conceptual understanding do not develop independently but rather iteratively, with gains in one 
leading to gains in the other, which in turn trigger new gains in the first. In this representation, the 
two kinds of knowledge exist in an interlocking process and are complementary to each other. 
Likewise, Hiebert et al. (1996) also pointed out that students integrated conceptual knowledge with 
their procedural skills when developing strategies for constructing new procedures. Developing one’s 
procedural knowledge in a domain is important for improving one’s conceptual knowledge in that 
domain, just as developing conceptual knowledge is essential for generation and selection of 
appropriate procedures (Rittle-Johnson et al., 2001). 

Building on these ideas, we argue that, in order to fully facilitate pre-service teachers’ 
learning to teach, the notion of Explanation under SCK should include procedural explanations and 
conceptual explanations. Conceptual explanations are further divided into conceptually 
mathematically-based explanations and conceptually practically-based explanations (Levenson, 
Tsamir, & Tirosh, 2010). Figure 1 shows the hierarchical construct of Explanation. Levenson et al. 
(2010) have pointed out that types of explanations used may vary in accordance with mathematical 
context, type of instructional activity, the aim of the explanation and student’s age level. This 
construct will be further unpacked in the following section. 

 
 

Figure 1. The hierarchical construct of Explanation 

Procedural and conceptual explanations. Procedural explanation involves explication of the rules and 
procedures (Hiebert & Wearne, 1986; Skemp, 1976) which describe the steps taken during a 

Explanation 

Conceptual 

Mathematically-based 

Practically-based 

Procedural 
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mathematical task (Fuchs, Fuchs, Hamlett, Phillips, Karns, & Dutka, 1997). Wearne and Hiebert (1988) 
describe procedural understanding as syntactic processes which mean developing symbol-
manipulation procedures and routinizing the rules for symbols. Procedural knowledge is also seen as 
knowledge of operators that can be applied to reach certain goals (Baroody, 2003; Rittle-Johnson et al., 
2001). In contrast to this, a conceptual explanation requires knowledge of the connections between 
related concepts/principles and their interrelations in a domain (Schneider & Stern, 2010). Wearne and 
Hiebert (1988) hold a similar view of conceptual explanations and describe them as semantic-based 
processes, meaning connections between symbols with referents and the development of rules. 
Conceptual knowledge is also an understanding of why a procedure works (Hiebert & Wearne, 1986) 
and of whether a procedure is legitimate (Bisanz & Lefevre, 1992). Hiebert (1992) concludes that 
conceptual knowledge is the knowledge that is rich in relationships but not rich in techniques for 
completing tasks, while procedural knowledge is rich in rules and strategies but not rich in 
relationships.  

For example, most people understand a procedure: “add a zero” to the number when 
multiplying by ten and “move the decimal point one digit to the left” when dividing by ten (Lai & 
Ho, 2012). Not only do teachers need to know how to do this mathematics, they also need to unpack 
and explain to students why this procedural rule works (Ball et al., 2008). In order to unpack 
mathematical knowledge, in a way that goes beyond the kind of tacit understanding of place value 
needed by most people, teachers need to know the principle of the decimal system for the conceptual 
explanation (refer to Hiebert, 1992; p. 286).  

In another example of procedural knowledge, most adults are proficient in executing an 
algorithm for the multiplication of fractions and know that the answer can be smaller than the 
original number (i.e., multiplicand) if the multiplier is less than one. However, not all adults are able 
to give a mathematical reason why the statement “multiplication always makes bigger” is only true 
for whole numbers and not for fractions and decimals, a common learning difficulty of primary 
students. In order to unpack this conceptual knowledge, teachers need to know that the principle of 
subdividing the two sides of a two-dimensional shape into equal strips is used to explain the 
mathematical concept for multiplication of one fraction by another fraction (Ocheful, 2013). As the 
area of a rectangle can be calculated by multiplying the length times the width, now consider a 
rectangle measuring 1 by 1 (Newmark & Lake, 1974). For example, 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 1

4
× 1

3
 can be 

represented in a rectangle as shown in Figure 2.  

 
 

 
 
 
 
 
 
 
 
 

Figure 2. Subdividing two sides of a 2-dimensional shape for 1
4

× 1
3
 

Thus, the shaded portion of the diagram is measured by 1
4

× 1
3
 and the area is 1

12
. Some 

educators may critique that this explanation is too mathematically rigorous for primary students to 
fully understand, as it is based on purely mathematical definitions (Levenson et al., 2010). Instead, 
those explanations which involve daily context and manipulatives may help students acquire the 
concept. The following is an alternate explanation to multiplication of fractions - the idea of recursive 
partitioning (Izsak, 2008).  
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Figure 3. Recursive partitioning for  1
2

× 1
3
 

Izsak defined recursive partitioning as taking a partition of a partition. For example, we can 
consider a task of 1

2
× 1

3
  as a result of taking 1

2
 of 1

3
 of a chocolate bar. Figure 3 shows the repeated 

partitioning. Thus, the pictures show clearly why, though the operation for 1
2
 of 1

3
 is multiplication, the 

outcome is 1
6
 which is smaller than 1

3 
.  

Sub-division of conceptual explanations - conceptually mathematically-based explanations and 
conceptually practically-based explanations. Levenson et al. (2010) further divide conceptual 
explanations into conceptually mathematically-based explanations and conceptually practically-based 
explanations. A conceptually mathematically-based explanation is “based on mathematical 
definitions or previously learned mathematical properties, and often uses mathematical reasoning” 
(Levenson et al., 2010, p. 346). The principle of subdividing two sides of a 2-dimensional shape for 
multiplication of fractions outlined earlier is an example of conceptually mathematically-based 
explanation.  Though this type of explanation is based solely on mathematical notions, they are not 
necessarily rigorous (Levenson, Tirosh, & Tsamir, 2004; Levenson et al., 2010). For example, a 
conceptually mathematically-based explanation for whole number multiplication is repeated 
addition, that is the meaning of 3×2 can be interpreted as “2 and another 2 is 4 and another 2 is 6” 
(Levenson et al., 2004; p. 243) or simply 2+2+2=6. A conceptually practically-based explanation is one 
which uses “daily contexts and/or manipulatives to ‘give meaning’ to mathematical expressions” 
(Levenson et al., 2010, p. 345). Many explanations of this type include visual aids, stories and concrete 
objects (Levenson et al., 2004). The recursive partitioning for 1

2
× 1

3
 outlined earlier is an example of 

conceptually practically-based explanation. Another example, the meaning of 3×2 can be represented 
by a story: “I have 3 sets of 2 pencils and therefore I have altogether 6 pencils.” Alternatively, 3×2 can 
be represented in an array diagram. 

One may argue that teachers should bring rigorous mathematical explanation such as 
conceptually mathematically-based explanation into classrooms as early as possible (Fischbein, 1987). 
However, other scholars such as Levenson et al. (2004) and Raman (2002) have pointed out that 
primary school students may be too young for rigorous mathematical explanations but can be 
convinced by daily life explanations such as conceptually practically-based explanation. 
Subsequently, Levenson at al. (2010) suggest a continuum of explanations, that is “beginning with 
practically-based explanations that use every day concrete objects, proceeding to semi-structured 
manipulatives, models, and generalized visual arguments, continuing to mathematically-based 
explanations and ending with formal explanations” (p. 349). Building on this idea, this paper 
supports Raman’s (2002) position that both conceptually mathematically-based and practically-based 
explanations are needed and useful. In conclusion, to properly equip pre-service teachers to teach 
mathematics effectively, this paper argues that conceptually mathematically-based and conceptually 
practically-based explanations should be included in the notion of conceptual explanation.  

Thus in summary, three types of explanation, namely, procedural explanation, conceptually 
mathematically-based explanation and conceptually practically-based explanation are proposed to be 
included in the notion of SCK.  

Partition each piece into two further pieces. 
Each piece represents  1

6
 . 

 

Partition a chocolate bar into three pieces. 
Each piece represents 1

3
. 
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Representation  

Knowledge about the world may exist, or be represented, in different forms (Anderson, 2010).  
Representations of a concept might be in terms of a set of propositions or in a visual image. 
Representation of a procedure might be in a list of steps. Overall, representation is defined as a 
process and/or a product that can capture a mathematical concept or a relationship in some forms 
(NCTM, 2000). Different studies (such as Azevedo, van Dooren, Clareboot, Elen, & Verschaffel, 2009; 
de Freitas & Sinclair, 2012) have reported that multiple representations are essential for the 
construction processes of mathematical understanding. Gagatsis and Shiakalli (2004) argue that one of 
the criteria for determining a person’s understanding of a mathematical concept entails “the ability to 
recognise an idea which is embedded in a variety of qualitatively different representational systems” 
(p. 645). Likewise, teachers’ ability to use multiple representations for explaining mathematical 
concepts is essential “in supporting students’ understanding of mathematical concepts and 
relationships” (NCTM, 2000; p. 67). Font, Godino and D’Amore (2007) have pointed out that 
representation can refer to any mathematical activities, cultural and cognitive productions and also 
those related to the world that surrounds us. Then, the question arises as to what types of 
representations are relevant to classroom teaching and students’ learning. 

Researchers such as Usiskin (1987), Hegarty and Kozhevnikov (1999) and van Garderen 
(2006) argue that visual representations (such as images, pictures, concrete objects, gestures, diagrams 
and graphs) are important in mathematics education and enhance understanding in many areas of 
mathematics. Similarly, Presmeg (1999) and Pape and Tchoshanov (2001) point out that the use of 
particular modes of representation such use of visual representations and concrete objects leads to 
improvement of primary students’ mathematical abilities and development of their problem solving 
skills. Their argument aligns with Bruner’s (1966) learning theory that through exploration of 
different forms of representation - concrete materials, pictures and symbols - students become more 
competent in capturing the abstract symbolic representations of mathematical ideas and operations. 
Thus, this paper proposes to include visual representation as one of the components of 
Representation.  

In addition to visual representations, non-visual representations such as daily life situations, 
stories, symbols and metaphors play equivalent roles to visual aids in developing students’ 
understanding of mathematical concepts. Building on this idea, we argue that the notion of 
representation should include visual representation and non-visual representation, all of which are 
commonly used in conceptual explanations in mathematics classrooms. In considering that 
procedural explanation primarily involves merely the manipulation of rules and procedures in 
symbolic forms, there is no further differentiation of representation in this type of explanation. As a 
result, two different representations, namely visual representation and non-visual representation for 
conceptually mathematically-based and practically-based explanation, are proposed to be included in 
the notion of SCK.  

The extended SCK framework  

The ability to justify a mathematical idea is determined by the person’s capacities in providing (1) 
correct numerical answers, (2) accurate explanation(s) and (3) using appropriate representation(s). In 
this framework, Justification refers to the correctness of the answer. For instance, a pre-service teacher 
may provide a correct answer with inaccurate or partially correct explanation. As a result, we 
developed a model to describe the relationship between Justification, Explanation and Representation 
under the notion of SCK as shown in Figure 4.   
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Figure 4. Framework for the extended notion of SCK (Modified from Lai & Ho, 2012) 
 

Trial of the framework 

The guiding question for this framework trial was whether the proposed framework enables 
researchers to identify the construct of SCK in the pre-service teachers’ responses to a written test 
which examine their SCK. A crucial stage in our development of constructs in SCK was moving the 
conceptualisation of the framework into practice; that is trialling the framework with a cohort of pre-
service teachers. In this section, we describe the participants and their background, the process of the 
trial and the scoring method. 

 

Participants 
In a regional university in Australia, the first year mathematics pedagogy subject was designed to 
develop pre-service teachers’ SCK. The subject provided pre-service teachers with concrete links 
between the procedures, concepts and representations related to those procedures (Newton, 2008).  
Ninety first year Bachelor of Education (Primary) pre-service teachers enrolled in this subject and sat 
for a mathematics test at the end of the subject in the second semester.  This mathematics test formed 
part of the assessment criteria that these pre-service teachers needed to fulfil in their degree course.  
With appropriate consent, the students’ responses to the written test provided the empirical basis for 
a trial of the proposed framework of SCK.  

 

Procedures 
The pedagogy subject included a one-hour lecture and a two-hour workshop per week for 14 weeks. 
In each week, the learning content focused on one big topic such as addition and subtraction of whole 
number, fractions, perimeter, 2D shapes and data handling. The specialised content knowledge, 
including procedural and conceptual knowledge, of different topics was covered in the lectures. In 
the workshops, different ways of explaining mathematical concepts (i.e., procedural, conceptually 
mathematically- based and practically-based explanations) using a range of representations (i.e., 
visual and non-visual) were demonstrated and discussed. Varieties of authentic hands-on 
activities/tasks were provided for the pre-service teachers to consolidate their understanding of 
different types of explanations in different forms of representation. 

Justification 

Correctness of 
numerical answer 

Incorrect  

Correct  

Explanation 
Procedural  

Conceptual  

Mathematically-
based  Representation 

Visual  

Non-visual  

Practically-
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Representation 
Visual  

Non-visual  
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In the first week of the semester, pre-service teachers were provided with 50 tasks that 
presented various scenarios of primary school students’ answers for different mathematics topics. 
Each of the tasks required the pre-service teachers to address the primary school students’ 
misconceptions, demonstrate their basic mathematics skills and give explanations for the underlying 
mathematical concepts in different forms of representation involved in the task. Lectures and 
workshops provided sufficient details of and discussions for the related mathematical concepts.  For 
instance, the pre-service teachers had worked directly with some of the 50 tasks within workshops, 
where they were presented with various examples of conceptually-based explanations in different 
forms of representation. The pre-service teachers were well informed of the requirements of the 
mathematics test including providing (1) correct numerical answers and (2) both procedural and 
conceptual explanations in (3) different forms of representation for all what and why questions which 
signified the demand of different types of explanation in different forms of representation. The pre-
service teachers were required to work outside of the lecture and workshop time to ensure that they 
were competent to respond appropriately to all of the tasks.  

The mathematics test consisted of 10 tasks which were selected randomly from the original 50 
tasks provided to the participants at the beginning of the semester. The tasks that have been 
attempted in the tutorials were excluded from the test. The pre-service teachers sat for the test in the 
last week of the semester.  

 

Scoring method 
Based on the earlier discussion of the proposed constructs of Specialized Content Knowledge as shown 
in Figure 4, each pre-service teacher’s response to the task was analysed in the following way: 

1. Justification of the numerical answer: Each response to the task was first checked for 
Justification, that is to decide whether or not the numerical answer was correct.  

2. Check for Explanation: Next, the response was checked for Explanation. Here the decision 
made was whether the explanation was procedural or conceptual. A procedural 
explanation was an explanation based on how to execute the algorithms. A conceptual 
explanation involved knowing the underlying mathematical reasons for the algorithms.  
A conceptual explanation was then further analysed as to whether it was a 
mathematically-based explanation or a practically-based explanation.  

3. Check for Representation: Responses that were identified as conceptually mathematically-
based and/or conceptually practically-based explanations were further analysed for the 
form of Representation, visual and/or non-visual representation.  

To establish the validity and reliability of the coding process, the first author and a mathematics 
education researcher who taught the subject each independently coded the 90 pre-service teachers’ 
responses with 85% agreement.  

This paper focuses on trialling the framework on two items of the mathematics test: 
multiplication of fractions and multiplication of decimals as in the following:  

 
Fraction Task: 
 
 
 
 
 
 
 
  

Cameron is working on the following problem: 
There is 3/4 of a pizza left after the party. 1/3 of the left-over are given to Sarah to take home. 
What fraction of a pizza does Sarah take home? 
You hear Cameron say “One-third of three-quarters; that’s the same as one-third times three-
quarters…” Peers of Cameron are very puzzled about his answer.  
What is the answer to the problem? How could you explain to the class?  
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Decimal Task: 
 
 
 

 

 
The items put emphasis on “how could you explain the concept to the class,” a key part of our 
conceptualisation of SCK which is distinct from general mathematics content knowledge. We realised 
that a teacher who holds strong knowledge in general mathematics content knowledge may not 
necessarily have sufficient knowledge for explaining a concept.  Fraction and decimal test items were 
selected to report in this study because they are considered to be the most complex mathematical 
domain in primary school mathematics (Ball, 1990). The limitations/weaknesses for confining the trial 
to the Number strand will be discussed later in this paper. 

 

Results  

The purpose of this section is not to perform validation work. Instead, we see the pre-service teachers’ 
responses to the written test providing data suitable for investigating the involvement of and utility 
of our proposed additional components of SCK. This analysis allowed insight into our central 
question: whether the proposed framework enables researchers to identify the construct of SCK in the 
pre-service teachers’ responses to a written test which examine their SCK.  

The following section discusses the results of using the proposed constructs to analyse the 
pre-service teachers’ responses to the two items - fraction and decimal items. Tables 1, 2, 3 and 4 
report the results related to the components of SCK. Table 1 shows the frequency and percentage of 
Correctness of the numerical answers and number of Explanation types. Table 2 shows the frequency and 
percentage correct of different types of Explanation. Tables 3 and 4 show the frequency and percentage 
correct of different types of Explanation in different forms of Representation that the pre-service 
teachers used in their self-generated responses to the fraction and decimal items. Table 5 displays the 
overall performance in providing correct answers, correct explanations and correct representations. 
This aspect of the data depicts a general picture for the central questions outlined earlier.   

 
Table 1  
Frequency and percentage of Justification and types of Explanation for fraction and decimal items (N=90) 

  Item Frequency Percent 
Justification 
(Correctness of 
the numerical 
answer) 

incorrect Fraction 16 17.8 
correct 74 82.2 
incorrect Decimal 29 32.2 
correct 61 67.8 

Explanation No type Fraction 24 26.7 
1 type 37 41.1 
2 types 23 25.6 
3 types 6 6.7 
No type Decimal 28 31.1 
1 type 49 54.4 
2 types 13 14.4 
3 types 0 0 

 

Susan got the answer 0.9 to the question 0.3×0.3. 
(a) Is the answer correct? Why? 

(b) How could you explain to your class? 
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Table 2  
Frequency and percentage correct of procedural explanation, conceptually mathematically-based explanation 
and conceptually practically–based explanation for fraction and decimal items (n=90) 
 

Type of Explanation Item Frequency correct Percentage correct 
Procedural Fraction 45 50 

Decimal 32 35.6 
Conceptually 
Mathematically-Based 

Fraction 15 16.7 
Decimal 31 34.4 

Conceptually 
Practically-Based 

Fraction 42 46.7 
Decimal 11 12.2 

 
Table 3 
Frequency and percentage correct of Representation for conceptually mathematically-based explanation for 
fraction and decimal items (n=90) 
 

Representation Item Frequency correct Percentage correct 
Non-visual Fraction 2 2.2 

Decimal 31 34.4 
Visual Fraction 13 14.4 

Decimal 6 6.7 
Table 4  
Frequency and percentage correct of Representation for conceptually practically-based explanation for fraction 
and decimal items (n=90) 
 

Representation Item Frequency correct Percentage correct 
Non-visual Fraction 19 21.1 

Decimal 6 6.7 
Visual Fraction 34 37.8 

Decimal 7 7.8 
 
Table 5  
The overall performance in providing correct answers, correct explanations and correct representations (n=90) 

Overall performance Item f % 
[Justification of Correctness]: No/Incorrect answer, 
[Explanation]: No/Incorrect, [Representation]: No/Incorrect 

Fractions 14 15.6 
Decimals 26 28.9 

[Justification of Correctness]: Correct answer only 
[Explanation]: No/Incorrect, [Representation]: No/Incorrect 

Fractions 10 11.1 
Decimals 3 3.3 

[Justification of Correctness]: Correct answer, [Explanation]: 
Procedural, [Representation]: No 

Fractions 19 21.1 
Decimals 25 27.8 

[Justification of Correctness]: Correct answer, [Explanation]: 
Conceptually mathematically-based [Representation]: Visual/ 
Non-Visual; OR 
[Justification of Correctness]: Correct answer, [Explanation]: 
Conceptually practically-based, [Representation]: Visual/Non-
Visual 

Fractions 12 13.3 

Decimals 18 20 

[Justification of Correctness]: Correct answer, [Explanation]: 
Procedural and Conceptually mathematically-based, 
[Representation]: Visual/Non-Visual; OR 

Fractions 
 
 

23 25.6 
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[Justification of Correctness]: Correct answer, [Explanation]: 
Procedural and Conceptually practically-based, 
[Representation]: Visual/Non-Visual; OR 
[Justification of Correctness]: Correct answer; [Explanation]: 
Conceptually mathematically-based; [Representation]: Visual 
and non-visual; OR 
[Justification of Correctness]: Correct answer; [Explanation]: 
Conceptually practically-based; [Representation]: Visual and 
non-visual 

 
 

Decimals 11 12.2 

[Justification of Correctness]: Correct answer, [Explanation]: 
Procedural and Conceptually mathematically-based, 
[Representation]: Visual and Non-visual;  OR 
[Justification of Correctness]: Correct answer, [Explanation]: 
Procedural and Conceptually practically-based, 
[Representation]: Visual and Non-visual; OR 
[Justification of Correctness]: Correct answer, [Explanation]: 
Conceptually mathematically-based and Conceptually 
practically-based, [Representation]: Visual/Non-visual and 
Visual/Non-visual 

Fractions 
 
 

 
 

5 5.6 

Decimals 7 7.8 

[Justification of Correctness]: Correct answer; [Explanation]: 
Procedural, Conceptually mathematically-based and 
Conceptually practically-based , [Representation]: Visual/Non-
visual and Visual/Non-visual; OR 
[Justification of Correctness]: Correct answer; [Explanation]: 
Conceptually mathematically-based and Conceptually 
practically-based ,  [Representation]: Visual and Non-visual, 
and Visual/Non-visual; OR 
[Justification of Correctness]: Correct answer; [Explanation]: 
Conceptually mathematically-based and Conceptually 
practically-based ,  [Representation]: Visual/Non-visual, and 
Visual and Non-visual 

Fractions 
 
 
 
 

7 7.8 

Decimals 0 0 

[Justification of Correctness]: Correct answer; [Explanation]: 
Conceptually mathematically-based and Conceptually 
practically-based ,  [Representation]: Visual and Non-visual, 
and Visual and Non-visual 

Fractions 0 0 

Decimals 0 0 

[Justification of Correctness]: Correct answer; [Explanation]: 
Procedural, Conceptually mathematically-based and 
Conceptually practically-based ,  [Representation]: Visual and 
Non-visual, and Visual and Non-visual 

Fractions 0 0 

Decimals 0 0 

 

Construct of Justification 

For the Justification, about 82% of pre-service teachers provided correct answers for  1
3

× 3
4
  in the 

fractions item and over 67% correctly responded that 0.9 is not an answer for 0.3 x 0.3 but 0.09 for the 
decimal item. However, not all pre-service teachers who answered correctly were also able to provide 
appropriate explanations for their answers as discussed in the following sections. 
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Construct of Explanation  

For the fraction item, the results indicated that slightly less than three quarters of the pre-service 
teachers provided at least one type of explanation. About 41%, 26% and 7% of the pre-service 
teachers correctly gave one type, two types and three types of explanations respectively. Among the 
pre-service teachers who provided one type of explanation, about 49% gave correct procedural 
explanations, 46% conceptually practically-based explanations and 5% conceptually mathematically-
based explanations. Among the pre-service teachers who gave two types of explanation, about 17% 
correctly provided conceptually mathematically-based and practically-based explanations, 22% 
procedural and conceptually mathematically-based explanations, and 57% procedural and 
conceptually practically-based explanations. More pre-service teachers provided practically-based 
explanations than mathematically-based explanations for conceptual explanations in this fraction 
task.  

For the decimal item, the results showed that slightly over two-thirds of the pre-service 
teachers correctly provided at least one type of explanation. About 54 % and 14% of the pre-service 
teachers gave one type and two types of explanation respectively. However, no one pre-service 
teacher provided all three types of explanation. Among the pre-service teachers who correctly 
provided one type of explanation, about 47% gave correct procedural explanations, 8% conceptually 
practically-based explanations and 45% conceptually mathematically-based explanations. Among the 
pre-service teachers who gave two types of explanation, about 30% provided correct conceptually 
mathematically-based and practically-based explanations, 46% procedural and conceptually 
mathematically-based explanations, and 23% procedural and conceptually practically-based 
explanations. Similar to the fraction item, the number of pre-service teachers who chose to provide 
procedural explanations was similar to that of pre-service teachers who chose to give conceptual 
explanations. However, unlike the fraction item, more pre-service teachers chose to provide 
mathematically-based explanations than those who gave practically-based explanations for the 
decimal item.  

 

Procedural Explanation  

For the fraction item, half of the pre-service teachers provided correct procedural explanations. Many 
of the correct responses demonstrated direct multiplication of the digits in the numerators and in the 
denominators:  1

3
× 3

4
= 1×3

3×4
= 3

12
 (refer to Figures 8 and 9 for example of written responses). These pre-

service teachers correctly applied a whole number multiplication procedure and this may have been 
due to the small digits in the fractions. Among those pre-service teachers who did not provide correct 
procedural explanations, some misapplied algorithms such as cross multiplied, others found a 
common denominator and then kept that denominator in their product, and some flipped the 
multiplier as used for the division of fractions. The results were in line with the findings reported by 
Newton (2008), and Isiksal and Cakiroglu (2011). These kinds of procedural errors were identified as 
“algorithmically based mistakes” and explained by the fact that some people apparently have 
understood the rote algorithms needed to manipulate the symbols but soon forgot and mixed up the 
procedures (Isiksal & Cakiroglu, 2011). This error might stem from pure rote memorisation of the 
algorithms without understanding the underpinned concepts (Isiksal & Cakiroglu, 2011). 

For the decimal item, the results indicated that about 35% of the pre-service teachers 
provided correct procedural explanations. Many of the correct responses were very straight forward 
reflecting a simple method of counting the number of decimal places in the multiplier and 
multiplicand, and then moving the decimal point in the product to get the corresponding number of 
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decimal places. The following is a topical response for procedural explanation (refer to Figure 12 for 
this written response): 

In multiplication of decimals, the number of digits to the right of the decimal place (added together) 
indicates how many places to the left of the answer, there should be 1d.p + 1d.p = 2p.d for 0.3 × 0.3, so 
009 →0.09 

Many pre-service teachers who provided incorrect responses for procedural explanations were 
not even aware of the number of decimal places but just recognised that 3 times 3 was 9 and the 
product must be a decimal because it was a decimal multiplication. Consequently, they came up with 
0.9 as their answers for 0.3 times 0.3. 

 

Conceptually mathematically-based Explanation in visual and non-visual 
Representation  

For the fraction item, many of the correct mathematically-based explanations were provided in visual 
representation using the principle of subdividing two sides of a 2-dimensional shape. Figure 5 
illustrates a topical response. 

 
 
 
 
 
 

 
 

Figure 5. An example of response presented in conceptually mathematically-based 
explanation using the principle of subdividing two sides of a 2-dimensional shape in visual 
representation 

Only two pre-service teachers chose to present the mathematically-based explanations in non-visual 
representation such as equations or words. The following shows a pre-service teacher’s response: 

 1
 3

  of  3
 4

 could be understood as   3
 4

  was divided (by) 3. Even if it was divided by 3, for purposes of fractions, it 
would still end up multiplying by  1

 3
  anyway. 

Another pre-service teacher (refer to Figure 10 for the written response) represented one-third of 
three quarters is one quarter in an equation of repeated addition  1

4
+ 1

4
+ 1

4
 . 

For the decimal item, among all the correct responses for conceptually mathematically-based 
explanations, many of the responses were presented in non-visual form.  The pre-service teachers 
associated 0.3 × 0.3 with 3

10
× 3

10
 which gave a product of 9

100
 and then translated 9

100
 to 0.09. It 

illustrated that some pre-service teachers made good connections between fractions and decimals. 
Figures 6 and 12 show examples of this type of response.  
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Figure 6. An example of conceptually mathematically-based explanation in non-visual 
representation for 0.3 × 0.3 

Few pre-service teachers provided correct mathematically-based explanations in both visual and non-
visual representations for 0.3 × 0.3. They applied the principle of subdividing two sides of a two-
dimensional shape to the decimal item and presented the concept in similar diagrams as in the 
fraction item. Figure 7 demonstrates an example of this response. Unlike the response shown in 
Figure 5 for the fraction item, the pre-service teacher did not denote the dimension of each of the 
subdivisions (i.e., 0.1 or  1

10
 ).  

 

 

 

 
 
 

Figure 7. An example of response presented in conceptually mathematically-based 
explanation using principle of subdividing two sides of a 2-dimensional shape in visual 
representation for 0.3 × 0.3 
 

Conceptually practically-based Explanation in visual and non-visual Representation  

In fraction items, nearly half of the pre-service teachers chose to use daily life examples and practical 
explanations. Among those pre-service teachers who provided correct practically-based explanations, 
about two-third of the responses were given in a visual representation. About one-third of the 
responses were presented in non-visual representation.  Figure 8 demonstrates a response of 
practically-based explanation using recursive partitioning presented in both visual and non-visual 
representations for 1

3
× 3

4
. The pre-service teacher firstly divided the pizza into four equal parts with 

three parts shaded as shown in the first picture in Figure 8. The pre-service teacher then further 
divided the three shaded parts into another three equal parts and shaded them as shown in the 
second picture in Figure 8. The pre-service teacher concluded his/her drawing in a sentence  1

3
 of  3

4
.  

  

 

 

In print: The answer should be 0.09, see the following 
calculation, 0.3= 3

10
,  3
10

× 3
10

=  3×3
10×10

= 9
100

=9 hundredths 
=0.09 
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Figure 8. An example of procedural explanation and conceptually practically-based 
explanation using recursive partitioning in both visual and non-visual representation for 
multiplication of fraction  

Instead of using recursive partitioning, some pre-service teachers used a concept of sub-division in 
visual representation for their conceptual practically-based explanation. Figures 9 and 10 demonstrate 
this point. In Figure 9, the pre-service teacher drew 3

4
 of the pizza which was the left over part. The 

pre-service teacher then shaded one part out of the three to indicate the portion that was taken home, 
which indicated 1

3
 of  3

4
 and concluded that “ 3

 4
  of a pizza remaining, 1

3
 is taken. Therefore  1

 4
 of the whole 

pizza was taken.”  Figure 10 shows another example presented in both visual and non-visual 
representation. This pre-service teacher provided a similar diagram as in Figure 9 and replied in 
words (non-visual) that “ 3

 4
  of a pizza is (the) left over which (is) divide(d) into three equal parts (and each 

part is) equal (to)  1
 4

. So Sarah will take  1
 4

 of the pizza home.”  

 
  

 

Figure 9. An example of procedural and conceptually practically-based 
explanations using sub-division in visual representation for multiplication of 
fractions 

In print: Amount of pizza left 

In print: Sarah take a 1
3
 of this 

1
3

×
3
4

=
1 × 3
3 × 4

 

       =
3

12
 

In print: Sarah takes  3
12

= 1
4
 of 

the pizza. 
               1

3
 of 3

4
 . 
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Figure 10. An example of conceptually mathematically-based explanation in non-visual 
representation and conceptually practically-based explanation in visual and non-visual 
representations 

The following illustrates another pre-service teacher’s response in conceptually practically-based non-
visual representation as well.  

… takes  1
 3

 of the  3
 4

 , that is divide the pizza into even numbers. In this case, divide the whole into 12 even 

parts to get 3 parts of the whole (i.e., 12 even parts) or 1
4
 of the whole. 

For the decimal item, not many pre-service teachers correctly provided conceptually practically-
based explanations using the principle of recursive partitioning in visual form. Figures 11 and 12 
illustrate these responses from two different pre-service teachers but the picture in Figure 11 is not 
totally correct.  

 
 
 
 

 
 
 
 
 
 

Figure 11. An example of conceptually practically-based explanation using recursive 
partitioning in visual and non-visual representation for 0.3 × 0.3 

  

 

 

See the in print 
in text. 
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Figure 12. An example of procedural explanation, conceptually mathematically-based 
explanation in non-visual representation and conceptually practically-based explanation in 
visual representation for 0.3×0.3 

Similar to the fraction item, in Figure 12 the pre-service teachers firstly divided a rectangle 
into 10 equal parts then shaded 3 parts; the shaded part represented 0.3.  The pre-service teachers 
then further divided the 3 parts into another 10 equal parts and lastly shaded 3 parts; the darken 
portion indicated 0.3 of 0.3.   

Only few pre-service teachers gave their conceptually practically-based explanations using 
recursive partitioning in non-visual form. The following illustrates this type of explanation. Another 
example is displayed in Figure 11. 

0.3 × 0.3 sometimes is easier to think of as 0.3 of 0.3. So the answer would have to be less than 0.3. The 
answer is 0.09. 

As reported earlier, for the fraction item only few pre-service teachers chose to use both types of 
conceptual explanations as shown in Figure 10. No pre-service teacher gave both types of conceptual 
explanations for the decimal items.  

 

Discussion 

No one would argue the fact that Specialised Content Knowledge (SCK) is essential to Pedagogical Content 
Knowledge for effective and quality mathematics teaching. However, the specific constructs that 
compose SCK remain underspecified. To address this research gap, this study used existing research 
to create a framework that extends the notion of SCK and trial the framework on a cohort of pre-
service teachers by evaluating the results from a written test according to our created framework.  
This discussion is framed around the study research question: whether the proposed framework 
enables researchers to identify the construct of SCK in the pre-service teachers’ responses to a written 
test which examine their SCK.  We strive to develop a more viable conceptual framework of 
Specialised Content Knowledge that can advance the field.  

 

 

In print:  
The correct answer is 0.09, as demonstrated 
below: 0.3×0.3 means 3

10
× 3

10
, so (see the 

diagram). Susan’s misconception is that as 
3×3=9, 0.3×0.3=0.9. But, as my working shows 
that answer is 0.09, see (the algorithm) 
In multiplication of decimals, the number of 
digits to the right of the decimal place (added 
together) indicates how many places to the left 
of the answer, there should be 1d.p + 1d.p = 2p.d 
for 0.3 × 0.3, so 009 →0.09 
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The trial indicated that the proposed framework shows promise for revealing specific 
important constructs of SCK. The framework allowed for the identification of pre-service teachers’ 
knowledge of fine-grained aspects of conceptual understanding including mathematically-based and 
practically-based explanations, as well as types of representations used to support student learning. 
The test items provided appropriate opportunities for pre-service teachers to respond according to 
their SCK. Analysis revealed details of individual understanding and patterns within a cohort.  In 
general, an analysis of the test results with this framework has provided some themes of common 
strengths and weaknesses. For example, more pre-service teachers provided practically-based 
explanations than mathematically-based explanations for the fraction task. They preferred presenting 
their explanations in visual form. However in contrast, more pre-service teachers provided 
mathematically-based explanations for the decimal task. They preferred presenting their explanations 
in non-visual form. The results also have indicated that the majority of the pre-service teachers did 
not tend to provide a broad range of explanations to support the development of students’ conceptual 
understanding. In fact, none of the pre-service teachers in the study provided all three types of 
explanations in the two forms of representations.  

Overall, pre-service teachers appear to be more comfortable with particular explanation and 
representation types, despite being exposed to a broad range within lectures and workshops.  It 
would be useful to survey the pre-service teachers with this framework at the beginning of program 
to ascertain their knowledge and conceptual understanding.  This information could be used to 
differentiate workshop activities so that all pre-service teachers are provided with opportunities to 
strengthen and broaden their knowledge of explanations and representations, SCK in general.  

The framework, used by multiple markers, allowed for identification of pre-service teachers’ 
conceptual understanding and knowledge of appropriate explanation types in different forms of 
representation. This level of insight into pre-service teacher’s knowledge has not been readily 
available through traditional testing and use of existing frameworks in literature review. Analysis 
indicated that using the proposed framework produced consistent interpretation of pre-service 
teacher responses. Being able to clearly identify pre-service-teachers use of different explanation types 
for teaching specific content has the potential to positively impact mathematics teacher education 
development. It may also empower pre-service teachers with practical information about their own 
pedagogical practices.    

Furthermore the framework gave a new level of awareness about pre-service teacher 
preference for representations according to different content - in this case fractions and decimals. 
Being able to identify detailed components of SCK with a test of this nature has not been feasible on 
large scales. Such a framework has the potential to provide data about pre-service teacher’s SCK in a 
new way for teacher educators.  

 

Conclusion 

This new approach has built on existing knowledge and research to fill a gap seen in existing 
frameworks.  While this framework provided some useful insights into pre-service teachers’ 
understanding of fractions and decimals, it is challenging for any framework to fully measure the 
complexity of SCK. Limitations noted through using this framework to analyse data highlighted the 
difficulty in distinguishing between the visual forms of mathematically-based and practically-based 
explanations. Some of the explanations provided by pre-service teachers indicated an overlap 
between these two types. Therefore, while all explanations were categorised according to these types, 
some may have been able to fit into both categories. Other limitations such as scalability and 
demography may also have adverse impact on the generality and applicability of the results.  

By developing the framework for identifying pre-service teachers’ SCK for teaching 
mathematics, this study attempts to contribute to identifying the construct of SCK for teaching by 
allowing insight into how knowledge is held by pre-service teachers and hence, to extend our notions 
of SCK. We suggest that three types of explanations (i.e., procedural explanations, and conceptual 
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explanations including mathematically-based and practically-based explanations) and two forms of 
mathematical representations (i.e., visual and non-visual) of concepts should be introduced and 
discussed in mathematics pedagogy subjects in teacher education programs. We see the report of 
analysis in this paper as a first step in the development of a measurement of pre-service teachers’ 
SCK. The data set was less than ideal because the analysis was only confined to number strands. 
Whether this framework is also workable for other strands such as space and geometry or 
measurement is not investigated within this study. Further study is required.  

We believe that developing such a framework can also contribute to reshaping the traditional 
method of marking examinations of teacher education subjects. The advantage of the framework is 
that it allows the teasing out of the strengths and weaknesses in SCK, that is, by using the framework, 
lecturers would be able to find out which SCK components each of their pre-service classes is strong 
in (and weak in), thus enabling them to design their mathematics pedagogy courses accordingly. The 
framework was found to be effective for these reasons: (1) the framework is easy to follow, making 
marking straightforward and thus moderation of marks is now unnecessary in the case where there is 
more than one marker; (2) lecturers are informed about the types of explanations (procedural and 
conceptual) and the forms of mathematical representations (visual and non-visual) that their pre-
service teachers have; and (3) lecturers are informed about their pre-service teachers’ strengths and 
weaknesses of mathematics concepts. 

In addition, use of this framework enables pre-service teachers to have clearer learning goals 
regarding the specialised content knowledge (SCK) for fractions and decimals. Further research could 
investigate the validity and reliability of the test items by using the framework, and the effectiveness 
of the proposed framework on pre-service teachers’ learning. 
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