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This article discusses three solutions to the Tower of Hanoi problem offered by 
students in a mathematics content course for prospective elementary school 
teachers. The course uses standards-based pedagogy and teaching via problem 
solving. Within this work, we consider the growth supported by collaboration at 
both the students' level and the teachers' level. In each case, we offer new 
understandings of algebraic representations and number systems. 

Change is a curious thing. Sometimes change happens abruptly, like the 
change brought on by a sudden, unexpected occurrence—the addition of a new 
family member, winning the lottery, and other kinds of surprise. Sometimes 
change is slow, happening over a long period of time. Sometimes it's so slow that 
the change is hardly noticeable.  

Education is often like that. Students spend years in school, often believing 
that not much is changing until they look back to see how far they have come. 
Education can be like that for teachers, too. As teachers, we consider ourselves 
constructivists, actively trying to build a model of our students' thinking and base 
our curricular decisions on that model (Steffe & D’Ambrosio, 1995). We anticipate 
learning about our students' thinking; in fact, that is our goal. We also teach via 
problem solving (Schroeder & Lester, 1989; Lester, & Mau, 1993; Lester et al. 1994), 
giving our students problems to solve and then helping them formalize and use 
mathematical symbols to record their thinking. We anticipate that this will help 
students’ comfort zones with mathematics. What we describe in this paper is 
something we had not anticipated—making new meaning of mathematics for 
ourselves. 

We teach mathematics content to prospective elementary and middle school 
teachers prior to their admission into the School of Education. Our students come 
to us with a variety of backgrounds. Their beliefs and attitudes about mathematics 
are varied—some never achieved success in mathematics and others never really 
struggled. Many of the students come with a mass of jumbled mathematics, 
recalling formulas tangled with other formulas and frequently using them at 
inappropriate times. Most of the students, however, learned mathematics sitting 
silently, working independently of their classmates. Many of them have developed 
a perspective of the nature of mathematics that we want to change. As part of the 
growth process we hope to create in our students, we require them to keep a 
reflective journal. At times, the journal prompts ask students to consider extension 
questions about the mathematics they are learning and at other times the prompts 
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ask them to consider their learning processes. As one of our students explained in 
an early journal entry, 

After the first day of class, I knew that my math thought process for this class was 
going to alter what I have learned previously. I've been so used to memorizing 
formulas and different ways to solve problems, i.e.: y = mx + b or A = 1/2 (bh) 

My brain has become a one-track mind. Now I'm having to do things differently. . . 
. We had to figure out some kind of formula. This is a reversal from what I've been 
taught in the past. . . . I'm figuring out how to do something on my own without someone 
telling me "This is exactly how you do it." (emphasis added) 

As teachers, we have multiple goals for our students: We want them to alter 
their perception of the nature of mathematical thought, to develop enough self-
confidence to persevere, to build their problem-solving strategies, to develop self-
monitoring techniques, and to learn to justify their thinking. To begin this task of 
change, we present them with problems and encourage them to work in groups to 
solve the problems. Our entire curriculum is built around small group problem 
solving. There is no lecture and no explanation from us as teachers. Rather, we 
pose the problems and then facilitate a whole class discussion where students 
determine the correctness of their work. One particular problem has pushed our 
thinking, eliciting change in us, and has pushed the students to engage in work 
they never believed they could do. 

The Problem 

One of our favorite problems is the Tower of Hanoi Problem. 

You are given five disks. Stack these disks so that they increase in size with the 
largest disk on the bottom. Imagine that these disks are stacked on a peg and that 
there are two other empty pegs on the table. The goal is to transfer all of the five 
disks to one of the other pegs using the fewest possible moves. You are to follow 
the conditions below: 

1. Move only one disk at a time. 
2. No disk may be placed on top of one smaller than itself.  

Students are given Cuisenaire rods of different sizes to model the problem 
physically. They typically begin to solve this problem by moving disks and 
informally trying to count the moves. As we move around the room discussing 
students' solutions with them, it soon becomes clear to them that there is a need to 
keep track of moves and to make records of their work with the disks. We 
encourage them to watch each other closely and be certain that they have solved 
the problem in the minimal number of moves. Students begin to make real 
progress toward the solution when they identify a systematic way of moving the 
disks. 

As is the case in all problems throughout this learning experience, students are 
encouraged to organize their data in ways that lend themselves to the emergence 
of useful patterns. Students' different counting strategies yield different forms of 
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tabulation of data. In the following sections we describe the different counting 
strategies used by our students and the implications for the patterns that emerged. 

At this point, it might be tempting to believe that we, as teachers, provided 
much of the information students needed to solve the problem. It may also 
tempting to believe that we told them exactly how to record their information. 
Although we did converse with them, we were exceptionally careful not to impose 
our thinking about the problem on them. As they recorded information, we might 
suggest that another arrangement would prove more useful. We might suggest 
that they organize around one idea rather than trying to accommodate several 
ideas and recording schemes all at once. However, we were unwilling to tell them 
exactly what information to record or how to organize it. 

The Three Solutions 

We use this problem during the first two weeks of class in order to help 
students begin the process of working in a group and begin to recognize the 
importance of organized record keeping. Typically, students begin by stabbing in 
the dark, grabbing at any solution strategy that strikes them. They tend to begin 
with the total number of disks suggested in the problem statement rather than 
finding a simpler problem and looking for a pattern. They record numbers rather 
randomly on the page. As we move around the room, we often have to ask what 
various numbers on the page represent because students failed to label their data. 
The process of organization often takes 45 minutes or more. As we encouraged 
students to start with a smaller number and to make organized lists (sometimes in 
tabular format), solutions began to emerge. Here we present their most polished 
solutions, formalized in standard mathematical notation. It is important to note 
that we provided this notation; students were rarely sophisticated enough to use 
mathematical symbols in conventional ways. It is also important to note that 
solutions remained on the board as successive groups presented their findings, 
providing us with the opportunity to compare solutions. 

Solution One 

A few groups counted the total number of moves for a certain number of disks. 
Affirmation of their data as the minimal number of moves came from two sources: 
a realization of a systematic way of counting moves and comparing findings with 
other groups’ results. Their solution had the following entries. 

Number of Disks Number of Moves 

1 1 

2 3 

3 7 

4 15 

5 31 

and so forth. 
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They decided that for n disks, they should compute the nth power of 2 and 
subtract 1, presenting the generalization as 2n – 1. We considered this adequate 
notation causing us to accept this without revision. 

Solution Two 

Students presenting this solution moved one disk and recorded the number of 
moves, moved two disks and recorded the number of moves, moved three disks 
and recorded the number of moves. As they recorded the moves for four, five, and 
six disks, they began to see a recursive pattern. For example, when they moved 
four disks, they counted the number of moves for the first three disks, moved the 
fourth disk, and then commented that they already knew the number of moves 
necessary to move the three disks to the final peg. Their solution had the following 
entries. 

Number of Disks Number of Moves 

1 1 

2 1 + 1 + 1 = 3 

3 3 + 1 + 3 = 7 

4 7 + 1 + 7 = 15 

In preparation for a whole-class discussion, we encouraged students to find a 
generalization of their pattern. Students in this group recorded and presented their 
pattern as “the number of moves = 2n+1”.  

During the whole-class discussion, we were concerned that students 
comparing Solutions One and Two might think that n represented the same number 
in each solution. In an effort to assess their understanding and compare Solution 
Two to Solution One, we asked about n—was it the same n as in Solution One? 
Students quickly told us no, that their n referred to the total number of moves from 
the previous number of disks. So for 4 disks, n=7, where 7 referred to the total 
number of moves for 3 disks.  

Formal notation for recursive patterns was unfamiliar to our students. This 
was the moment where we, as teachers, inducted students into a new use of formal 
mathematical symbols. In helping students translate their verbal explanation into 
mathematical symbols, we suggested the following formal notation. If one 
considers an as the number of moves for n disks, then the number of moves for n+1 
disks could be expressed as 

   an+1 = an + 1 + an 
or 
   an+1 = 2an + 1 
The language of recursive form versus closed form emerged from the 

comparison of Solutions One and Two. Throughout the semester, students 
periodically revisited this language, trying to determine for themselves whether or 
not their generalizations for other patterns were recursive or closed. 
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Solution Three 

These students chose a different approach. They counted the number of times 
each individual disk moved. They recorded the following work, where disk 1 is the 
largest disk. 

Disk Number of moves Total Moves 

1 1 1 

2 2 3 

3 4 7 

4 8 15 

5 16 31 

6 32 63 

and so forth. 
In order to calculate the number of moves for four disks, they added 1 + 2 + 4 + 

8. To calculate the number of moves for five disks, they added 1 + 2 + 4 + 8 + 16. 
They partially refined their understanding of this “doubling pattern” in the 
number of moves for each disk to a recognition of this pattern as successive 
powers of 2. However, they struggled to link 1 to 20. When this connection was 
resolved, then they presented the total number of moves as 20 + 21 + 22 + ... + 2n-1, 
for n disks. 

In effect, they found the total number of moves to be the summation of powers 
of 2, starting with 20 and summing to 2n-1, where n = the number of disks. We made 
the decision not to use a summation symbol with these students at this point. Our 
sense was that students had reached their limit of new formal notation and 
language. 

In all three solutions, the same table of values emerges, yet the solutions are 
essentially very different. The difference lies in the students' work. Students who 
added powers of two did so because of the way they were counting the number of 
moves for each individual disk. Other students either used a recursive counting 
strategy or found the pattern in analysing the numbers directly from the table. 
Each solution is a direct result of students' actions and counting strategies. 

Beginnings of Growth: Collaboration 

When most groups had a formal solution, we called the students back to a 
whole-class discussion. Groups were asked to volunteer their solutions. As each of 
the solutions was presented to the rest of the class, some students had difficulty 
following the explanations. Students whose groups had approached the problems 
in very different ways had to be shown the actions of other groups and how other 
groups recorded those actions in order to understand and be able to decide 
whether the solution was correct. Additionally, students often had to question 
other groups about the group's thinking and the mathematical notation in order to 
make sense of the solution. In effect, collaboration across groups began. 
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For us, collaboration is joint meaning making and results in joint ownership of 
ideas. In an inquiry setting this means that we have collaborative conversations 
that help us develop new understandings through the understandings of others. 
Collaborative conversations help us to extend ourselves (Harste, 1994). These new 
understandings are the focus of our discussion in this section. We think of these 
new understandings as occurring in various layers of interactions. 

The first layer of interaction occurs within the small group setting. Students 
engage in small group interactions where they articulate their thinking to each 
other. Many students experience internal tensions as they make sense of others' 
thinking in light of their own. The commitment of the group results in producing a 
group consensus to the solution of the problem. This commitment pushes the 
individuals in the group to persevere in overcoming the tensions among group 
members' diverse ways of thinking. When a student begins to see the other group 
members' ways of thinking, the student begins to extend personal understanding. 

We can begin to understand the tensions students felt by listening to Callie’s 
words as she writes in her journal about the experience of solving this problem. 

I have learned how important it is to take down in writing your observations 
about patterns quickly to help you find the answers to all different kinds of math 
problems. I have also learned better how to work in a group utilizing the benefits 
of each individual at the same time to get answers more quickly so that we don't 
stumble over each other as much. At first, however, our group could work on this a 
lot more. I'm the one that often needs to be patient and shut up because I often confuse 
some of them trying to explain what patterns I see. It never seems to come out in words or 
concepts that they understand without me having to explain it for 20 minutes until I get it 
into something they understand. 

I am beginning to understand also the kinds of thoughts you need to have 
stewing in the back of you mind when looking for a mathematical pattern. You 
shouldn't, I don't think, be looking specifically for any given equation you've 
learned before, but look for similar patterns of functions (or arithmetic processes) 
to give better clues of what the questions are asking. 

. . . all through my math classes I have been struggling with why math does 
what it does and always hated it because I wasn't learning anything but how to do 
what I was told—make myself a math machine with no brain but to memorize and repeat. 
For once in my life, I have finally gotten a glimpse of insight into how to learn math 
and why it's so interesting. (emphasis added) 

The second layer occurs as groups share their solution techniques with other 
groups. In this particular problem (Towers of Hanoi), as students listen to others 
share their mathematical solutions a tension similar to the individual tension 
occurs. In order to understand Group A's solution, members of other groups must 
be able to build a representation of Group A's process. That is, they need to be able 
to see the actions Group A used to formulate their solution. Frequently, this 
required the presenting group to use overhead Cuisenaire rods and literally to 
move the rods and develop their data chart so that listeners could understand their 
solution process. The tensions among groups become the same as the tensions 
originally among individuals within a group. These are the moments of 
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disequilibrium that can result in learning as students construct meaning (Mason, 
1996). 

Yet a third layer of interaction occurs as the teacher (or in this case, teachers) 
tries to follow the students' explanations and make sense of the students' thinking. 
Teachers, like students, have solutions in their minds, and it is often difficult for 
them to see another's solution. As teachers begin to understand students' solutions 
that differ from their own, teachers begin to extend themselves. That is, they begin 
to understand mathematics in deeper ways (Confrey, 1993). 

Layers of Collaboration and the Development 
of Mathematical Connections 

For us as teachers, a fourth layer of interaction and collaboration occurred. We 
co-taught this course which met two hours each day and three days each week. We 
considered it important for both of us to be in the room at all times, regardless of 
which of us was taking the lead for the whole-class discussion. This luxury of 
watching each other teach became the impetus for our own professional growth 
and joint inquiry. 

Joint planning and analysis occurred daily—before, during, and after class. 
While students worked in small groups, we observed and discussed their thinking, 
strategies, and difficulties. We purposefully chose the order of presentations based 
on students’ work, envisioning the sequence that would support the richest 
discourse among students. While one of us facilitated the large group discussion, 
the other took field notes that we later used in combination with students’ written 
work and journals to build our interpretations of students’ understanding. 
Throughout the entire semester, our joint inquiry focused on building a model of 
our students’ understanding of mathematical concepts in order to shape our 
instruction. The example of the Tower of Hanoi is a snapshot of this inquiry that 
illustrates how unexpected student solutions can provide new mathematical 
meaning for teachers who engage in this inquiry. 

As we began to understand students' thinking, we found our own tension in 
our desire to equate the algebraic solutions. We were clear that the students' 
actions were adequately and accurately represented in the symbols chosen; it was 
less obvious that we could easily demonstrate the algebraic equivalence of the 
three representations. Although we were able to use the formal mathematical 
demonstration commonly found in advanced algebra and calculus texts to 
demonstrate the equivalence of Solutions Two and Three, demonstrating the 
algebraic equivalence of Solution One to either Solution Two or Three was less 
straightforward. As we struggled to relieve our tensions, to find the symbol 
manipulation that we typically use as our mathematical currency, we found 
connections in mathematics that had not previously occurred to us. It was only 
when we began to look at the pattern of the numbers represented by Solution Three 
and One that we saw the numerical equivalence regardless of the value of n (see 
End Notes for the proof). Our realization of equivalence came from our 
understanding of place value, regardless of the base. 
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In effect, we built new mathematical meanings as we struggled to teach from a 
constructivist perspective (Confrey, 1993). We found ourselves thinking about 
place value in new ways. It was only as we struggled to put words to Solution Three 
that we came to think of the summation as representing a base two number in 
expanded notation. 

We also found ourselves looking for alternate base (other than 10) 
representations in problems throughout the curriculum for the remainder of the 
semester. We began to recognize missed opportunities in other problems. Not only 
had we failed to make the mathematical connections in our own minds, we had 
failed to make those connections explicit for our students.  

We began to think about mathematical symbols in other ways. Symbols could 
no longer be viewed as a set of instructions telling students what to do. As the 
students worked and we thought about their solutions, it became clear that the 
symbols resulted from the actions, not the actions from the symbols. Students' very 
personal ways of counting led to very personal solutions, which accounted for the 
mismatch of one group's counting scheme with another group's scheme. These 
mismatches led to tensions in understanding, and those tensions became 
springboards for learning. As we realized the power and importance of these 
springboards, we began to strive to recognize opportunities and to capitalize on 
them as fully as possible. These differences and the students' reactions to them 
allowed us to discuss thinking, emotional reactions, and appropriate responses to 
problems. Attending to all of the human responses to mathematics allowed us to 
view the students' solutions and their inability to understand others' solutions in a 
new way—that physical action is the source of mathematical representation and 
that different actions yield different algebraic solutions. 

Our message through this example is that teachers who listen to students and 
who struggle to understand students on their own terms have the opportunity to 
learn new mathematics. Our desire to be constructivist teachers (Steffe & 
D’Ambrosio, 1995) and to respect students’ thinking became the springboard for 
our doing mathematics, equating the logic of the students’ solutions and finding 
symbolism to represent their thinking. We realized how students’ rather 
straightforward thinking provides the backdrop for rich mathematical learning 
when we take the time and effort to model their actions and representations 
through formal mathematics. For us, this experience reinforced the need to use 
students’ understandings as the catalysts for furthering their mathematical 
knowledge. Only when students' thinking is the focus will we truly be able to say 
that we are teaching mathematics. Only when our students, future teachers of 
elementary school children, are able to represent their own thinking will they be 
able to teach children to represent their own thinking. This change may only occur 
when we extend ourselves and our current understandings, when we take a close 
look at students' solutions and begin to make new sense of mathematics and 
mathematical thinking. 

 



Making Sense of Students’ Sense Making 53 

 

End Note—Our Proof for Algebraic Equivalence 

It is reasonably easy to demonstrate that Solution Two (an+1 = 2an + 1) and 
Solution Three (20 + 21 + 22 + 23 + ... + 2n-1) are algebraically equivalent. In order to 
do this, start with the recursive form and successively substitute the algebraic form 
for an in each iteration. 

Number of Disks  Algebraic Expression 

 1   a1 = 1 (number of moves for one disk) 

 2   a2 = 2a1 + 1 

 3    a3 = 2a2 + 1 

    a3 = 2(2a1 + 1) + 1 

    a3 = 4a1 + 2 + 1 

 4   a4 = 2a3 + 1 

    a4 = 2(4a1 + 2 + 1) + 1 

    a4 = 8a1 + 4 + 2 + 1 

 5   a5 = 2a4 + 1 

    a5 = 2(8a1 + 4 + 2 + 1) + 1 

    a5 = 16a1 + 8 + 4 + 2 + 1 

and so forth. Note that a1 = 1, so a simple substitution yields a summation of 
powers of 2. 

Now we need to demonstrate that the closed form, Solution One, is 
algebraically equivalent to the summation form, Solution Three. 

  
    

k
2

k=0

n−1
∑ = 2n − 1 

Although this can be demonstrated using geometric series, an opportunity to 
build additional connections exists. If we list successive terms in the summation on 
the left, we get 1 + 2 + 4 + 8 + 16 + . . . + 2n-1. Writing this sum as a number in base 
two, we have 111111...1two where there are n digits of 1. If we look at 2n - 1 and 
write it as a base two number, we have 1000000...0two - 1 where the first number 
has n zeros, that is, n+1 digits. Subtracting 1 from that number leaves us with 
111111...1 two, where the number has n digits of 1. That is, 

  
    

k
2

k=0

n−1
∑ = 2n − 1 

 

 

 



54 Mau & D’Ambrosio 

References 

Confrey, J. (1993). Learning to see children's mathematics: Critical challenges to 
constructivist reform. In K. Tobin (Ed.), The practice of constructivism in science education 
(pp. 299-321). Washington, DC: American Association for the Advancement of Science. 

Harste, J. (1994). Literacy as curricular conversations about knowledge, inquiry, and 
morality. In R. B. Ruddell, M. R. Ruddell, & H. Singer (Eds.), Theoretical models and 
processes of reading (pp. 1220-1242). Newark, DE: International Reading Association. 

Lester, F. K., & Mau, S. T. (1993). Teaching mathematics via problem solving: A course for 
prospective elementary teachers. For the Learning of Mathematics, 13(2), 8-11. 

Lester, F. K., Masingila, J. O., Mau, S. T., Lambdin, D. V., dos Santos, V. M. P., & Raymond, 
A. M. (1994). Learning how to teach via problem solving. In D. B. Aichele & A. F. 
Coxford (Eds.), Professional development for teachers of mathematics: 1994 yearbook (pp. 152-
166). Reston, VA: National Council of Teachers of Mathematics. 

Mason, J. (1996). Tensions. In R. B. Corwin, J. Storeygard, & S. L. Price (Eds.), In talking 
mathematics: Supporting children's voices (pp. 103-111). Portsmouth, NH: Heinemann. 

Schroeder, T. L., & Lester, F. K., Jr. (1989). Developing understanding in mathematics via 
problem solving. In P. R. Trafton & A. P. Shulte (Eds.), New directions for elementary 
school mathematics (pp. 31-42). Reston, VA: National Council of Teachers of 
Mathematics. 

Steffe, L. P., & D’Ambrosio, B. S. (1995). Toward a working model of constructivist teaching: 
A reaction to Simon. Journal for Research in Mathematics Education, 26, 146-159. 

 
 

Authors 
Sue Tinsley Mau, Indiana University Purdue University Fort Wayne, Department of 
Mathematical Sciences, 2101 East Coliseum Blvd.Fort Wayne, Indiana 46805-1499.  
E-mail:<maus@ipfw.edu> 

Beatriz D’Ambrosio, Indiana University Purdue University Indianapolis, School of 
Education, 902 W. New York Street, Indianapolis, Indiana 46202-5155.  
E-Mail: <bdambro@iupui.edu> 

 


